organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis[4-(2-pyridylmethylamino)phenyl]methane dihydrate

Marcelino Maneiro,^a* Antonio L. Llamas-Saiz,^b Nagarajan Vembu^c and Kevin B. Nolan^a

^aCentre for Synthesis and Chemical Biology, Department of Pharmaceutical and Medicinal Chemistry, Royal College of Surgeons in Ireland, 123 St Stephens Green, Dublin 2, Ireland, ^bUnidade de Raios X, RIAIDT, Edificio CACTUS 1° andar, Campus Universitario Sur, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain, and ^cDepartment of Chemistry, Urumu Dhanalakshmi College, Tiruchirappalli 620 019, India

Correspondence e-mail: qimaneir@usc.es

Received 2 June 2007; accepted 6 June 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.042; wR factor = 0.132; data-to-parameter ratio = 11.0.

The pyridyl and benzene rings in the title compound, $C_{25}H_{26}N_4 \cdot 2H_2O$, show significant deviation from coplanarity due to a twist in the molecule, and this is reflected in the C- N(H)-C-C torsion angles of -82.8 (3) and 70.8 (3)°. The supramolecular architecture is effected by O-H···O quadrilaterals, one-dimensional N-H···O chains, two-dimensional networks of O-H···O, N-H···O and O-H···N interactions, face-to-face C-H··· π and π - π interactions [with a ring-centroid separation of 3.904 (2) Å] and intra- and intermolecular van der Waals interactions. The overall structure of the title compound is maze-like, consisting of interleaved molecules stabilized by π - π interactions and by a hydrogenbonding network involving water molecules, amino groups and pyridyl N atoms.

Related literature

For a detailed account of the synthetic methodology of the anhydrous form, L2, of the title compound, $L2\cdot 2H_2O$, see Keegan *et al.* (2001), and for its metal complexes, see: Yoshida & Ichikawa (1997); Hannon *et al.* (1997); He *et al.* (2000); Keegan *et al.* (2002). For related literature, see: Bernstein *et al.* (1995); Desiraju (1989); Desiraju & Steiner (1999); Etter (1990); Jodry & Lacour (2000); Kruger *et al.* (2001).

V = 2287.6 (4) Å³

Mo $K\alpha$ radiation

 $0.45 \times 0.41 \times 0.27 \text{ mm}$

15266 measured reflections

3292 independent reflections

2173 reflections with $I > 2\sigma(I)$

 $\mu = 0.08 \text{ mm}^{-1}$

T = 293 (2) K

 $R_{\rm int} = 0.030$

 $\theta_{\rm max} = 23.3^{\circ}$

Z = 4

Experimental

Crystal data

 $\begin{array}{l} C_{25}H_{26}N_4{\cdot}2H_2O\\ M_r = 416.51\\ Monoclinic, P_2_1/n\\ a = 13.8250 ~(13)~\text{\AA}\\ b = 6.5843 ~(6)~\text{\AA}\\ c = 25.291 ~(2)~\text{\AA}\\ \beta = 96.461 ~(2)^\circ \end{array}$

Data collection

```
Bruker SMART 1000
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
T_{\rm min} = 0.966, T_{\rm max} = 0.979
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.042$	H atoms treated by a mixture of
$wR(F^2) = 0.132$	independent and constrained
S = 1.02	refinement
3292 reflections	$\Delta \rho_{\rm max} = 0.38 \ {\rm e} \ {\rm \AA}^{-3}$
298 parameters	$\Delta \rho_{\rm min} = -0.12 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg2, Cg3 and Cg4 are the centroids of the C39/N40/C41–C44, C11–C16 and C31–C36 rings, respectively.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N17 $-$ H17 $\cdot \cdot \cdot$ O1 W^{i}	0.88 (3)	2.08 (3)	2.951 (3)	170 (3)
$N37 - H37 \cdots O2W$	0.87 (3)	2.05 (3)	2.916 (3)	171 (3)
$O1W - H1W1 \cdots O2W^{ii}$	0.91 (3)	1.86 (3)	2.751 (3)	166 (3)
$O1W - H1W2 \cdot \cdot \cdot N20^{iii}$	0.91 (3)	1.92 (3)	2.829 (3)	174 (3)
$O2W - H2W1 \cdots O1W$	0.90(3)	1.87 (3)	2.763 (3)	176 (3)
$O2W - H2W2 \cdot \cdot \cdot N40^{iv}$	1.02 (3)	1.79 (3)	2.804 (3)	177 (2)
$C1-H1A\cdots Cg4^{v}$	0.97	3.03	3.777	135
$C1 - H1B \cdots Cg2^{vi}$	0.97	3.24	4.106	150
C23 $-H23 \cdots Cg3^{vii}$	0.93	3.10	3.959	154

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) $-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{3}{2}$; (iii) -x + 1, -y, -z + 1; (iv) x, y - 1, z; (v) -x + 1, -y + 2, -z; (vi) -x + 1, -y + 1, -z; (vii) -x, -y + 2, -z.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT-Plus* (Bruker, 1998); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SIR97* (Altomare *et al.* 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics:

PLATON (Spek, 2003); software used to prepare material for publication: *SHELXL97*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2420).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. &Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (1998). *SMART* (Version 5.054) and *SAINT-Plus* (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.
- Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.

- Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press.
- Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
- Hannon, M. J., Painting, C. L., Jackson, A., Hamblin, J. & Errington, W. (1997). J. Chem. Soc. Chem. Commun. pp. 1807–1808.
- He, C., Duan, C.-Y., Fang, C.-J. & Meng, Q.-J. (2000). J. Chem. Soc. Dalton Trans. pp. 2419–2424.
- Jodry, J. J. & Lacour, J. (2000). Chem. Eur. J. 6, 4297-4304.
- Keegan, J., Kruger, P. E., Nieuwenhuyzen, M. & Martin, N. (2002). Cryst. Growth Des. 2, 329–332.
- Keegan, J., Kruger, P. E., Nieuwenhuyzen, M., O'Brien, J. & Martin, N. (2001). Chem. Commun. pp. 2192–2193.
- Kruger, P. E., Martin, N. & Nieuwenhuyzen, M. (2001). J. Chem. Soc. Dalton Trans. pp. 1966–1970.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1998). SADABS. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Yoshida, N. & Ichikawa, K. (1997). J. Chem. Soc. Chem. Commun. pp. 1091– 1092.

Acta Cryst. (2007). E63, o3194-o3195 [doi:10.1107/S1600536807027857]

Bis[4-(2-pyridylmethylamino)phenyl]methane dihydrate

M. Maneiro, A. L. Llamas-Saiz, N. Vembu and K. B. Nolan

Comment

The self assembly of highly ordered molecular structures from small components is of much current interest with applications in areas such as fabrication of nanoscale devices and molecular machinery. An example of such self assembly is the formation of double- or triple-helical architectures (Jodry & Lacour, 2000) from multidentate organic ligands and their metal complexes (Yoshida & Ichikawa, 1997, Hannon *et al.*, 1997, He *et al.*, 2000, Keegan *et al.*, 2002). The design of these structures usually involves suitably compartmentalized ligands, which are capable of forming weak π ··· π interactions between their aromatic rings (Kruger *et al.*, 2001). This paper reports the molecular and supramolecular architecture of the title compound which displays several of these and other interactions.

The molecular structure of the title compound, L2.2H₂O, is shown in Fig. 1 and selected geometric parameters are given in Table 1. The N17—C18 & N37—C38 distances are consistent with C—N single bonds whereas the C14—N17 & C34—N37 bond distances are shorter than those expected for C—N single bonds. However, the C14—N17—C18 & C34—N37—C38 bond angles are considerably larger than expected for sp^3 hybridized nitrogen atoms, which may suggest a possible interaction between the lone pair on nitrogen and the aromatic cloud of the attached phenyl ring, thereby suggesting considerable sp^2 character for these nitrogen atoms. This is further confirmed by the sum of the bond angles around the two aliphatic nitrogen atoms, N17 & N37 [359.5 (2)].

Any two adjacent pairs of rings are non-coplanar as confirmed by their interplanar angles, cg1 & cg3, 80.55 (8)°, cg3 & cg4, 78.54 (7)° and cg2 & cg4, 83.44 (9)°. The two pyridyl rings are also relatively non-coplanar as shown by their interplanar angle (cg1 & cg2, 80.6 (1)°). The interplanar angles between cg1 & cg4 is 3.2 (1)° and cg2 & cg3 is 31.7 (8)°. The pyridyl and phenyl rings (cg1 & cg3 and cg2 & cg4) show significant deviation from coplanarity due to a twist in the molecule as reflected in the torsion angles, C14—N17—C18—C19 and C34—N37—C38—C39. cg1, cg2, cg3 and cg4 refer to C19/N20/C21/C22/C23/C24, C39/N40/C41/C42/C43/C44, C11—C16 and C31—C36 rings, respectively.

The crystal structure of L2.2H₂O is stabilized by the interplay of O—H···O, N—H···O, O—H···N, C—H··· π (Table 2), π ··· π and van der Waals interactions. The hydrogen bond distances are similar to those reported in the literature (Desiraju & Steiner, 1999; Desiraju, 1989). The N—H···O interactions generate a motif of graph set $R^2_2(7)$ (Bernstein *et al.*, 1995 & Etter, 1990) and form infinite one-dimensional chains along [010] (Fig. 2). Directed 4-membered cooperative O—H···O quadrilaterals of graph set $R^2_2(8)$ contribute to the supramolecular aggregation of the title compound. The N—H···O, O—H···N and O—H···O interactions together generate an infinite two-dimensional network along the base vectors [010] & [101] and through the plane (10–1). There are three significant intermolecular C—H··· π interactions (Table 2) in the title compound. The C—H··· π interactions in the title compound can best be classified as face-to-face interactions in contrast to the presence of edge-to-face C—H··· π and N—H··· π interactions in L2 (Keegan *et al.*, 2001). There is a significant face-to-face π ··· π interaction between cg1 and cg4 (-*x*, 2 - *y*, -*z*) at 3.904 Å. Within and between asymmetric units, there are two significant vdW interactions, O1W & O2W, 2.763Å and O2W & O1W (0.5 - *x*, -1/2 + *y*, 0.5 - *z*), 2.751 Å, respectively.

The overall structure of L2.2H₂O is maze-like consisting of interleaved molecules stabilized by $\pi \cdots \pi$ interactions and by a H-bonding network involving water molecules, amino groups and pyridyl nitrogen atoms.

Experimental

The anhydrous analogue of the title compound, L2, was prepared by reported methods (Keegan *et al.*, 2001). An attempted synthesis of a Pt(II) complex of L2 resulted in the title compound, L2.2H₂O, whose details are given below. Potassium tetrachloroplatinate(II) (0.5 g, 1.2 mmol) dissolved in 6 ml of deionized water by gentle heating was added dropwise to 10 ml solution of L2 (0.23 g, 0.6 mmol) in THF dropwise under a N₂ atmosphere. The orange-red suspension formed was stirred under a N₂ atmosphere and then filtered. The filtrate was allowed to evaporate slowly at room temperature to yield yellow crystals of the title compound.

Refinement

The methylene and phenyl H atoms were included in calculated positions with C—H distances at 0.97 & 0.93 Å, respectively, and refined by a riding model. The hydrogen atoms of two water molecules were located from the difference map and refined. The thermal parameters of all H-atoms were obtained as $1.2U_{eq}$ of the respective carrier atoms.

Figures

Fig. 1. The asymmetric unit of $L2.2H_2O$, with atom labels and 50% probability displacement ellipsoids for non-H atoms. H-atoms are depicted as spheres of arbitrary radius.

Bis[4-(2-pyridylmethylamino)phenyl]methane dihydrate

Crystal data	
$C_{25}H_{26}N_4{\cdot}2H_2O$	$F_{000} = 888$
$M_r = 416.51$	$D_{\rm x} = 1.209 {\rm Mg m}^{-3}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 3590 reflections
a = 13.8250 (13) Å	$\theta = 1.6 - 23.3^{\circ}$
b = 6.5843 (6) Å	$\mu = 0.08 \text{ mm}^{-1}$
c = 25.291 (2) Å	T = 293 (2) K
$\beta = 96.461 \ (2)^{\circ}$	Prism, yellow
V = 2287.6 (4) Å ³	$0.45\times0.41\times0.27~mm$
c = 25.291 (2) A $\beta = 96.461$ (2)° V = 2287.6 (4) Å ³	T = 293 (2) K Prism, yellow $0.45 \times 0.41 \times 0.27$ mm

Z = 4

Data collection

Bruker SMART 1000 diffractometer	3292 independent reflections
Radiation source: fine-focus sealed tube	2173 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.030$
T = 293(2) K	$\theta_{\text{max}} = 23.3^{\circ}$
ω scans	$\theta_{\min} = 1.6^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1998)	$h = -15 \rightarrow 15$
$T_{\min} = 0.966, T_{\max} = 0.979$	$k = -7 \rightarrow 7$
15266 measured reflections	$l = -29 \rightarrow 29$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.042$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.132$	$w = 1/[\sigma^2(F_o^2) + (0.0471P)^2 + 0.9837P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.02	$(\Delta/\sigma)_{\rm max} < 0.001$
3292 reflections	$\Delta \rho_{max} = 0.38 \text{ e} \text{ Å}^{-3}$
298 parameters	$\Delta \rho_{min} = -0.12 \text{ e } \text{\AA}^{-3}$

Primary atom site location: structure-invariant direct Extinction correction: none methods

х

Special details

Experimental. Elemental analysis for C₂₅H₂₈N₄O₂ (%) calculated (found) C 72.1 (72.6), H 6.7 (6.6), N 13.5 (13.7). Mass spectrometry (HL²⁺) 381 ¹H NMR (CDCl₃, p.p.m.): 8.60 (s, 2H), 7.70 (td, 2H), 7.39 (d, 2H), 7.24 (t, 2H), 7.00 (d, 4H), 6.61 (d, 4H), 4.49 (s, 4H), 3.77 (s, 2H)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

 $U_{iso}*/U_{eq}$ \boldsymbol{z} v

C1	0.87779 (18)	0.5628 (5)	0.42784 (10)	0.0827 (8)
H1A	0.9162	0.4405	0.4254	0.099*
H1B	0.9076	0.6702	0.4090	0.099*
C11	0.77551 (18)	0.5258 (4)	0.40167 (10)	0.0677 (7)
C12	0.7160 (2)	0.6854 (4)	0.38258 (10)	0.0748 (7)
H12	0.7415	0.8162	0.3838	0.090*
C13	0.62098 (19)	0.6572 (4)	0.36204 (10)	0.0718 (7)
H13	0.5838	0.7682	0.3493	0.086*
C14	0.57952 (18)	0.4653 (4)	0.36000 (9)	0.0635 (6)
C15	0.63801 (19)	0.3049 (4)	0.37885 (10)	0.0727 (7)
H15	0.6125	0.1742	0.3781	0.087*
C16	0.73429 (19)	0.3368 (4)	0.39883 (10)	0.0734 (7)
H16	0.7722	0.2258	0.4107	0.088*
N17	0.48350 (17)	0.4426 (4)	0.34013 (10)	0.0833 (7)
H17	0.449 (2)	0.547 (4)	0.3274 (11)	0.100*
C18	0.43134 (19)	0.2539 (4)	0.34144 (10)	0.0774 (8)
H18A	0.4692	0.1480	0.3268	0.093*
H18B	0.3704	0.2661	0.3186	0.093*
C19	0.40925 (17)	0.1884 (5)	0.39610 (10)	0.0714 (7)
N20	0.38042 (16)	-0.0038 (4)	0.39905 (9)	0.0821 (7)
C21	0.3573 (2)	-0.0687 (6)	0.44635 (15)	0.1067 (11)
H21	0.3371	-0.2026	0.4492	0.128*
C22	0.3620 (2)	0.0530 (9)	0.49074 (14)	0.1204 (14)
H22	0.3457	0.0021	0.5229	0.144*
C23	0.3909 (3)	0.2485 (8)	0.48680 (15)	0.1195 (13)
H23	0.3941	0.3344	0.5161	0.143*
C24	0.4152 (2)	0.3174 (5)	0.43919 (13)	0.0948 (9)
H24	0.4358	0.4508	0.4359	0.114*
C31	0.87835 (16)	0.6217 (4)	0.48559 (10)	0.0678 (7)
C32	0.85431 (18)	0.4802 (4)	0.52260 (11)	0.0748 (7)
H32	0.8413	0.3472	0.5117	0.090*
C33	0.84924 (19)	0.5308 (4)	0.57473 (11)	0.0726(7)
H33	0.8331	0.4317	0.5984	0.087*
C34	0.86786 (18)	0.7282 (4)	0.59285 (10)	0.0661 (7)
C35	0.89461 (18)	0.8687 (4)	0.55661 (11)	0.0735 (7)
H35	0.9099	1.0008	0.5676	0.088*
C36	0.89886 (17)	0.8149 (4)	0.50424 (11)	0.0731 (7)
H36	0.9163	0.9131	0.4806	0.088*
N37	0.8591 (2)	0.7726 (4)	0.64518 (10)	0.0911 (8)
H37	0.842 (2)	0.674 (5)	0.6653 (12)	0.109*
C38	0.8702 (2)	0.9706 (4)	0.66792 (11)	0.0796 (8)
H38A	0 8344	0 9760	0 6988	0.096*
H38B	0.8407	1.0681	0.6422	0.096*
C39	0.9734(2)	1 0348 (4)	0 68468 (10)	0.0721 (7)
N40	0.98277(19)	1 2202 (4)	0 70503 (9)	0.0897(7)
C41	1 0730 (3)	1 2855 (7)	0 72215 (14)	0 1294 (15)
H41	1 0806	1 4148	0 7368	0.155*
C42	1.1531 (3)	1.1699 (11)	0.71890 (16)	0.158 (2)
H42	1 2143	1 2200	0 7314	0 190*
				J/ V

C43	1.1442 (3)	0.9828 (10)	0.69761 (15)	0.1420 (18)
H43	1.1988	0.9030	0.6948	0.170*
C44	1.0528 (3)	0.9122 (6)	0.68019 (12)	0.1015 (10)
H44	1.0445	0.7830	0.6655	0.122*
O1W	0.65233 (15)	0.2278 (3)	0.69672 (8)	0.0831 (6)
H1W1	0.651 (2)	0.140 (4)	0.7242 (11)	0.100*
H1W2	0.646 (2)	0.153 (4)	0.6664 (11)	0.100*
O2W	0.81936 (17)	0.4559 (3)	0.72040 (7)	0.0841 (6)
H2W1	0.764 (2)	0.386 (4)	0.7116 (11)	0.101*
H2W2	0.879 (2)	0.370 (5)	0.7162 (11)	0.101*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0612 (17)	0.108 (2)	0.0804 (18)	-0.0081 (15)	0.0146 (13)	-0.0091 (16)
C11	0.0611 (15)	0.0806 (19)	0.0626 (15)	-0.0043 (14)	0.0131 (12)	-0.0071 (14)
C12	0.0813 (19)	0.0669 (17)	0.0761 (17)	-0.0181 (15)	0.0092 (14)	-0.0013 (14)
C13	0.0803 (19)	0.0594 (16)	0.0734 (17)	-0.0030 (14)	-0.0016 (14)	0.0038 (13)
C14	0.0663 (16)	0.0631 (16)	0.0595 (14)	-0.0014 (13)	0.0007 (12)	-0.0008 (12)
C15	0.0754 (18)	0.0564 (16)	0.0839 (18)	-0.0034 (14)	-0.0015 (14)	-0.0021 (14)
C16	0.0690 (17)	0.0724 (18)	0.0774 (17)	0.0098 (14)	0.0015 (13)	-0.0031 (14)
N17	0.0748 (16)	0.0674 (15)	0.1012 (18)	-0.0049 (12)	-0.0184 (13)	0.0072 (13)
C18	0.0681 (17)	0.0843 (19)	0.0767 (18)	-0.0089 (14)	-0.0052 (13)	0.0045 (15)
C19	0.0516 (14)	0.089 (2)	0.0717 (17)	-0.0012 (14)	-0.0025 (12)	-0.0064 (16)
N20	0.0722 (15)	0.0931 (18)	0.0804 (16)	-0.0068 (13)	0.0053 (12)	0.0068 (14)
C21	0.087 (2)	0.125 (3)	0.108 (3)	-0.011 (2)	0.012 (2)	0.025 (2)
C22	0.082 (2)	0.203 (5)	0.078 (2)	-0.010 (3)	0.0149 (18)	0.009 (3)
C23	0.084 (2)	0.187 (4)	0.088 (3)	-0.010 (3)	0.0137 (19)	-0.033 (3)
C24	0.084 (2)	0.117 (3)	0.083 (2)	-0.0076 (18)	0.0075 (16)	-0.024 (2)
C31	0.0490 (14)	0.0813 (19)	0.0725 (17)	-0.0074 (13)	0.0041 (12)	-0.0014 (15)
C32	0.0761 (18)	0.0635 (16)	0.0830 (19)	-0.0072 (14)	0.0013 (14)	-0.0039 (15)
C33	0.0828 (18)	0.0609 (16)	0.0734 (18)	-0.0088 (14)	0.0054 (14)	0.0060 (14)
C34	0.0690 (16)	0.0594 (15)	0.0692 (17)	-0.0057 (13)	0.0044 (12)	0.0047 (13)
C35	0.0797 (18)	0.0607 (16)	0.0790 (18)	-0.0120 (13)	0.0043 (14)	0.0031 (14)
C36	0.0627 (16)	0.0785 (19)	0.0773 (18)	-0.0138 (14)	0.0040 (13)	0.0133 (15)
N37	0.136 (2)	0.0649 (16)	0.0749 (17)	-0.0216 (15)	0.0226 (15)	-0.0046 (12)
C38	0.090 (2)	0.0688 (18)	0.0803 (18)	-0.0060 (15)	0.0122 (15)	-0.0059 (15)
C39	0.0812 (19)	0.0817 (19)	0.0538 (15)	0.0013 (16)	0.0098 (13)	0.0048 (14)
N40	0.0999 (19)	0.0971 (19)	0.0734 (15)	-0.0213 (15)	0.0159 (13)	-0.0147 (14)
C41	0.126 (3)	0.171 (4)	0.094 (3)	-0.056 (3)	0.026 (2)	-0.041 (3)
C42	0.101 (3)	0.290 (7)	0.083 (3)	-0.039 (4)	0.012 (2)	-0.046 (4)
C43	0.089 (3)	0.258 (6)	0.077 (2)	0.040 (3)	-0.001 (2)	-0.005 (3)
C44	0.096 (2)	0.129 (3)	0.078 (2)	0.027 (2)	0.0021 (18)	0.0007 (19)
O1W	0.0961 (14)	0.0633 (12)	0.0872 (14)	-0.0003 (10)	-0.0018 (12)	0.0047 (10)
O2W	0.1074 (16)	0.0667 (12)	0.0776 (12)	-0.0125 (11)	0.0077 (11)	-0.0065 (10)
	(2 0)					

Geometric parameters (Å, °)

C1-C31

C31—C36

1.510 (3)

1.375 (3)

C1—C11	1.512 (3)	C31—C32	1.387 (3)
C1—H1A	0.9700	C32—C33	1.369 (3)
C1—H1B	0.9700	С32—Н32	0.9300
C11—C16	1.367 (3)	C33—C34	1.392 (3)
C11—C12	1.387 (4)	С33—Н33	0.9300
C12—C13	1.369 (3)	C34—N37	1.374 (3)
C12—H12	0.9300	C34—C35	1.382 (3)
C13—C14	1.386 (3)	C35—C36	1.379 (3)
С13—Н13	0.9300	С35—Н35	0.9300
C14—N17	1.374 (3)	С36—Н36	0.9300
C14—C15	1.382 (3)	N37—C38	1.426 (3)
C15—C16	1.386 (3)	N37—H37	0.87 (3)
C15—H15	0.9300	C38—C39	1.502 (4)
С16—Н16	0.9300	C38—H38A	0.9700
N17—C18	1.439 (3)	C38—H38B	0.9700
N17—H17	0.88 (3)	C39—N40	1.326 (3)
C18—C19	1.512 (4)	C39—C44	1.377 (4)
C18—H18A	0.9700	N40—C41	1.344 (4)
C18—H18B	0.9700	C41—C42	1.354 (6)
C19—N20	1.332 (3)	C41—H41	0.9300
C19—C24	1.377 (4)	C42—C43	1.345 (6)
N20—C21	1.342 (4)	C42—H42	0.9300
C21—C22	1.375 (5)	C43—C44	1.372 (5)
C21—H21	0.9300	C43—H43	0.9300
C22—C23	1.355 (5)	C44—H44	0.9300
С22—Н22	0.9300	O1W—H1W1	0.91 (3)
C23—C24	1.364 (5)	O1W—H1W2	0.91 (3)
С23—Н23	0.9300	O2W—H2W1	0.90 (3)
C24—H24	0.9300	O2W—H2W2	1.02 (3)
C31—C1—C11	111.6 (2)	C23—C24—H24	120.2
C31—C1—H1A	109.3	C19—C24—H24	120.2
C11—C1—H1A	109.3	C36—C31—C32	116.5 (2)
C31—C1—H1B	109.3	C36—C31—C1	123.2 (3)
C11—C1—H1B	109.3	C32—C31—C1	120.3 (3)
H1A—C1—H1B	108.0	C33—C32—C31	121.9 (2)
C16—C11—C12	116.3 (2)	С33—С32—Н32	119.1
C16—C11—C1	122.2 (3)	C31—C32—H32	119.1
C12—C11—C1	121.3 (3)	C32—C33—C34	121.1 (2)
C13—C12—C11	122.4 (2)	C32—C33—H33	119.5
С13—С12—Н12	118.8	С34—С33—Н33	119.5
С11—С12—Н12	118.8	N37—C34—C35	123.7 (2)
C12—C13—C14	120.8 (2)	N37—C34—C33	118.9 (2)
C12—C13—H13	119.6	C35—C34—C33	117.4 (2)
C14—C13—H13	119.6	C36—C35—C34	120.6 (2)
N1/	123.2 (2)	C36—C35—H35	119.7
N1/	119.4 (2)	C34—C35—H35	119.7
C15—C14—C13	117.4 (2)	C31—C36—C35	122.5 (2)
C14—C15—C16	120.7 (2)	C31—C36—H36	118.7
C14—C15—H15	119.6	C35—C36—H36	118.7

C16—C15—H15	119.6	C34—N37—C38	124.5 (2)
C11—C16—C15	122.3 (2)	C34—N37—H37	117 (2)
C11—C16—H16	118.8	C38—N37—H37	118 (2)
C15—C16—H16	118.8	N37—C38—C39	115.2 (2)
C14—N17—C18	123.5 (2)	N37—C38—H38A	108.5
C14—N17—H17	120 (2)	C39—C38—H38A	108.5
C18—N17—H17	115.9 (19)	N37—C38—H38B	108.5
N17—C18—C19	114.9 (2)	С39—С38—Н38В	108.5
N17—C18—H18A	108.6	H38A—C38—H38B	107.5
C19-C18-H18A	108.5	N40-C39-C44	121.8 (3)
N17-C18-H18B	108.6	N40-C39-C38	114.6 (3)
C19—C18—H18B	108.5	C44—C39—C38	123.5 (3)
H18A—C18—H18B	107.5	C39—N40—C41	117.8 (3)
N20-C19-C24	122.3 (3)	N40-C41-C42	122.5 (4)
N20-C19-C18	114.5 (2)	N40—C41—H41	118.8
C24—C19—C18	123.2 (3)	C42—C41—H41	118.8
C19—N20—C21	117.1 (3)	C43—C42—C41	120.0 (4)
N20-C21-C22	123.2 (4)	C43—C42—H42	120.0
N20-C21-H21	118.4	C41—C42—H42	120.0
C22—C21—H21	118.4	C42—C43—C44	118.6 (4)
C23—C22—C21	118.8 (4)	C42—C43—H43	120.7
С23—С22—Н22	120.6	C44—C43—H43	120.7
C21—C22—H22	120.6	C43—C44—C39	119.2 (4)
C22—C23—C24	119.0 (4)	C43—C44—H44	120.4
С22—С23—Н23	120.5	C39—C44—H44	120.4
С24—С23—Н23	120.5	H1W1—O1W—H1W2	107 (3)
C23—C24—C19	119.7 (3)	H2W1—O2W—H2W2	112 (3)
C31—C1—C11—C16	-93.3 (3)	C11—C1—C31—C36	-108.3 (3)
C31—C1—C11—C12	82.0 (3)	C11—C1—C31—C32	69.5 (3)
C16—C11—C12—C13	0.1 (4)	C36—C31—C32—C33	1.3 (4)
C1-C11-C12-C13	-175.4 (2)	C1—C31—C32—C33	-176.6 (2)
C11—C12—C13—C14	0.7 (4)	C31—C32—C33—C34	0.2 (4)
C12—C13—C14—N17	178.7 (2)	C32—C33—C34—N37	178.2 (2)
C12-C13-C14-C15	-0.7 (4)	C32—C33—C34—C35	-2.0 (4)
N17-C14-C15-C16	-179.5 (2)	N37—C34—C35—C36	-177.9 (3)
C13—C14—C15—C16	-0.1 (4)	C33—C34—C35—C36	2.3 (4)
C12-C11-C16-C15	-1.0 (4)	C32—C31—C36—C35	-1.0 (4)
C1—C11—C16—C15	174.5 (2)	C1—C31—C36—C35	176.9 (2)
C14—C15—C16—C11	1.0 (4)	C34—C35—C36—C31	-0.8 (4)
C15-C14-N17-C18	6.1 (4)	C35—C34—N37—C38	4.3 (4)
C13—C14—N17—C18	-173.3 (2)	C33—C34—N37—C38	-175.9 (3)
C14—N17—C18—C19	70.8 (3)	C34—N37—C38—C39	-82.8 (3)
N17—C18—C19—N20	-166.2 (2)	N37—C38—C39—N40	179.0 (2)
N17—C18—C19—C24	15.8 (4)	N37—C38—C39—C44	-1.7 (4)
C24—C19—N20—C21	-0.2 (4)	C44—C39—N40—C41	-1.0 (4)
C18—C19—N20—C21	-178.3 (2)	C38—C39—N40—C41	178.3 (3)
C19—N20—C21—C22	0.1 (5)	C39—N40—C41—C42	0.5 (5)
N20-C21-C22-C23	0.3 (6)	N40—C41—C42—C43	0.4 (7)
C21—C22—C23—C24	-0.7 (6)	C41—C42—C43—C44	-0.9 (7)

C22—C23—C24—C19 N20—C19—C24—C23 C18—C19—C24—C23	0.6 (5) -0.1 (4) 177.8 (3)	C42—C43- N40—C39- C38—C39-	C44C39 C44C43 C44C43		0.4 (6) 0.5 (4) -178.7 (3)
Hydrogen-bond geometry (Å, °)					
D—H···A	<i>D</i> —H	H····A	1.	$D \cdots A$	D—H··· A
N17—H17…O1W ⁱ	0.88 (3) 2.08	(3)	2.951 (3)	170 (3)
N37—H37…O2W	0.87 (3) 2.05	(3)	2.916 (3)	171 (3)
O1W—H1W1···O2W ⁱⁱ	0.91 (3) 1.86	(3)	2.751 (3)	166 (3)
O1W—H1W2···N20 ⁱⁱⁱ	0.91 (3) 1.92	(3)	2.829 (3)	174 (3)
O2W—H2W1···O1W	0.90 (3) 1.87	(3)	2.763 (3)	176 (3)
O2W—H2W2···N40 ^{iv}	1.02 (3) 1.79	(3)	2.804 (3)	177 (2)
C1—H1A…Cg4 ^v	0.97	3.03		3.777	135
C1—H1B···Cg2 ^{vi}	0.97	3.24		4.106	150
C23—H23···Cg3 ^{vii}	0.93	3.10		3.959	154

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) -*x*+3/2, *y*-1/2, -*z*+3/2; (iii) -*x*+1, -*y*, -*z*+1; (iv) *x*, *y*-1, *z*; (v) -*x*+1, -*y*+2, -*z*; (vi) -*x*+1, -*y*+1, -*z*; (vii) -*x*, -*y*+2, -*z*.

Fig. 2

